Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
Double grids, offering a combination of mesh support values, are used primarily in metallurgical applications for supporting thin metal foils. Two grids are joined by a thin 'hinge', allowing one grid to be folded on top of the other, trapping the specimen between them.
The G2010 slot grid has an overall thickness of ~50 microns. The grid type number corresponds to the overall slot size in mm eg. G2010 = 2x1mm slot. Molybdenum grids are especially useful in ion milling applications because of its resistance to etching.